Recursive estimation of one-dimensional parameter of Compound Poisson process*

Nanuli Lazrieva ${ }^{a, b}$, Temur Toronjadze ${ }^{a, b}$
${ }^{a}$ Business School, Georgian-American University, 8 M. Aleksidze Str., Tbilisi 0160, Georgia
${ }^{b}$ A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi 0177, Georgia

Abstract

Recursive estimation procedure of a one-dimensional parameter of Levy measure of Compound Poisson process is introduced and their asymptotic properties are investigated.

The object of our investigation is a parameter filtered statistical model

$$
\begin{equation*}
\mathcal{E}=\left(\Omega, \mathcal{F}, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0},\left(P_{\theta}, \theta \in R\right)\right) \tag{1}
\end{equation*}
$$

associated with one-dimensional \mathbb{F}-adapted RCLL process $X=\left(X_{t}\right)_{t \geq 0}$ in the following way: for each $\theta \in R, P_{\theta}$ is assumed to be the unique measure on (Ω, \mathcal{F}) such that under $P_{\theta}, X=$ $\left(X_{t}\right)_{t \geq 0}$ is a semimartingale the triplet of predictable characteristics $\left(B_{\theta}, 0, \nu_{\theta}\right)$, where $B_{\theta}(t)=$ $\lambda_{t} \int_{R} x I_{(|x| \leq 1)} \nu(\theta, d x), \nu_{\theta}(d t, d x)=\lambda d t \nu(\theta ; d x)$, where $\lambda>0, \nu(\theta, \cdot)$ is probability measure with $\int_{R} x^{2} \nu(\theta, d x)<\infty$.

It is obvious that under $P_{\theta}, X=\left(X_{t}\right)_{t \geq 0}$ is a Compound Poisson process that can be written in the following form:

$$
X_{t}=\sum_{i=1}^{N_{t}} \xi_{i}
$$

where $N=\left(N_{t}\right)_{t \geq 0}$ is a Standard Poisson process with intensity $\lambda>0$, and $\xi=\left(\xi_{n}\right)_{n \geq 1}$ is the sequence of i.i.d. random variables with the probability distribution $\nu(\theta, \cdot)$ (see, e.g., [1]).

Our aim is to construct recursive estimation procedure for unknown parameter $\theta \in R$.
Suppose that for each pair $\left(\theta, \theta^{\prime}\right)$ the measures $\nu(\theta, \cdot)$ and $\nu\left(\theta^{\prime}, \cdot\right)$ are equivalent. Fix some $\widetilde{\theta} \in R$ and denote $P_{\widetilde{\theta}}:=P, \nu_{\widetilde{\theta}}:=\nu, \nu(\widetilde{\theta} ; x)=\nu(\cdot)$. Then

$$
P_{\theta} \stackrel{l o c}{\sim} P, \quad \theta \in R
$$

and the local density process $\rho_{t}(\theta)=\frac{d P_{\theta, t}}{d P_{t}}$ can be represented as the Dolean esponential

$$
\rho_{t}(\theta)=\mathcal{E}_{t}(M(\theta))
$$

where $M(\theta)=(Y(\theta)-1) *(\mu-\nu)$, where $Y(\theta, x)=\frac{d \nu(\theta, x)}{d \nu(x)}$.

[^0]Further, assume that the density $Y(\theta, x)$ is continuously differentiable in θ for each $x \in R$, and differentiability under integral signs is possible. Note that under assumptions listed above the model (1) is regular in the sense given in [2].

It is not hard to observe that

$$
\begin{equation*}
L_{t}(\theta):=\frac{\partial}{\partial \theta} \ln \rho_{t}(\theta)=\frac{\dot{Y}(\theta)}{Y(\theta)} *\left(\mu-\nu_{\theta}\right)=\Phi(\theta) *\left(\mu-\nu_{\theta}\right) \quad\left(\Phi(\theta)=\frac{\dot{Y}(\theta)}{Y(\theta)}\right) . \tag{2}
\end{equation*}
$$

Hence, the maximum likelihood equation is

$$
\begin{equation*}
L_{t}(\theta)=\Phi(\theta) *\left(\mu-\nu_{\theta}\right)_{t}=0 . \tag{3}
\end{equation*}
$$

Remark 1. The problem of solvability of Eq. (3) in more general setting is studied in (3).
Eq. (3) can be rewritten in the equivalent form

$$
\begin{equation*}
\sum_{n=1}^{N_{t}} \frac{\dot{Y}\left(\theta, \xi_{n}\right)}{Y\left(\theta, \xi_{n}\right)}=0 \quad \Longrightarrow \quad \widehat{\theta}_{t}-\text { MLE. } \tag{3}
\end{equation*}
$$

So, for each $t>0$, we need to solve Eq. (3) or (31) which is not easy task (in general).
Instead in [2] we proposed the recursive procedure to obtain the process $\theta=\left(\theta_{t}\right)_{t \geq 0}$ (recursive estimate) with the same asymptotic properties as MLE $\hat{\theta}_{t}$, as $t \rightarrow \infty, P_{\theta}$-a.s.

To develop this procedure first of all assume that

$$
I(\theta):=\int_{R} \Phi^{2}(x, \theta) \nu(\theta, d x)<\infty .
$$

Then $L(\theta)=\left(L_{t}(\theta), t \geq 0\right) \in M_{l o c}^{2}\left(P_{\theta}\right)$ and the Fisher information process is

$$
I_{t}(\theta)=\langle L(\theta), L(\theta)\rangle_{t}=\lambda t I(\theta) .
$$

Denote $\gamma_{t}(\theta)=I_{t}^{-1}(\theta)$. The recursive estimation procedure, $\operatorname{SDE}(3.4)$ of [4] in the case under consideration is of the following form:

$$
\begin{align*}
\theta_{t}=\theta_{0} & +\int_{0}^{t} \int_{R} \gamma_{s}\left(\theta_{s-}\right) \Phi\left(\theta_{s-}, x\right)\left(1-\frac{Y\left(\theta_{s-}, x\right)}{Y(\theta, x)}\right) \nu(d s, d x) \\
& +\int_{0}^{t} \int_{R} \gamma_{s}\left(\theta_{s-}\right) \Phi\left(\theta_{s-}, x\right)\left(\mu-\nu_{\theta}\right)(d s, d x) . \tag{4}
\end{align*}
$$

Remark 2. Although Eq. (4) is equivalent to the following equation

$$
\begin{equation*}
\theta_{t}=\theta_{0}+\sum_{n=1}^{N_{t}} \frac{\Phi\left(\theta_{n-1}, \xi_{n}\right)}{n I(\theta)}, \tag{4}
\end{equation*}
$$

we prefer the form of Eq. (4) to investigate asymptotic properties of θ_{t}, as $t \rightarrow \infty, P_{\theta}$-a.s., based on results concerning asymptotic behaviour of solutions of Robbins-Monro (RM) type SDE.

The Robbins-Monro type SDE

$$
\begin{equation*}
z_{t}=z_{0}+\int_{0}^{t} H_{s}\left(z_{s-}\right) d K_{s}+\int_{0}^{t} M\left(d s, z_{s-}\right) \tag{5}
\end{equation*}
$$

where $H_{s}(0)=0, H_{s}(u) u<0, u \neq 0$, was introduced in [5]. In [5], 6], the asymptotic behaviour of $z=\left(z_{t}\right)_{t \geq 0}$, as $t \rightarrow \infty, P_{\theta}$-a.s. was investigated.

Assume that for each $x \in R$ the function $Y(\theta, x)$ is strongly monotone in θ. Denote $z_{t}=\theta_{t}-\theta$, then Eq. (4) becomes

$$
\begin{align*}
z_{t}=z_{0} & +\int_{0}^{t} \int_{R} \gamma_{s}\left(\theta+z_{s-}\right) \Phi\left(\theta+z_{s-}, x\right)\left(1-\frac{Y\left(\theta+z_{s-}, x\right)}{Y(\theta, x)}\right) \nu_{\theta}(d s, d x) \\
& +\int_{0}^{t} \int_{R} \gamma_{s}\left(\theta+z_{s-}\right) \Phi\left(\theta+z_{s-}, x\right)\left(\mu-\nu_{\theta}\right)(d s, d x) \tag{5}
\end{align*}
$$

and is of the form (5) with $K_{t}=\lambda t$,

$$
\begin{align*}
& H_{t}(u)=\int_{R} \gamma_{t}(\theta+u) \Phi(\theta+u, x)\left(1-\frac{Y(\theta+u, x)}{Y(\theta, x)}\right) \nu(\theta, d x), \tag{6}\\
& M(u)=\left[M_{t}(u), t \geq 0\right]=\left[\int_{0}^{t} \int_{R} \gamma_{s}(\theta+u) \Phi(\theta+u, x)\left(\mu-\nu_{\theta}\right)(d s, d x), t \geq 0\right] . \tag{7}
\end{align*}
$$

Denote

$$
h_{t}(u)=\frac{d\langle M(u), M(u)\rangle_{t}}{d K_{t}}=\gamma_{t}^{2}(\theta+u) \int_{R} \Phi^{2}(\theta+u, x) \nu(\theta, d x)=\gamma_{t}^{2}(\theta+u) I(\theta+u) .
$$

Hence, (5] is the special case of the RM type SDE (5) with objects $H(u)=\left(H_{t}(u)\right)_{t \geq 0}$ and $M(u)=(M(t, u))_{t \geq 0}$ specified by Eqs. (6) and (7), respectively.

Therefore one can use the results about asymptotic behaviour of solution $z=\left(z_{t}\right)_{t \geq 0}$ of general SDE (5) to establilsh asymptotic behaviour of solution of SDE (5), as $t \rightarrow \infty$.

Namely, one can use Theorem 3.1 of [5] to derive sufficient conditions for the convergence: $z_{t} \rightarrow 0$, as $t \rightarrow \infty, P_{\theta}$-a.s., for all $\theta \in R$ (recall that from now $z=\left(z_{t}\right)_{t \geq 0}$ is the solution of SDE (51). Further, sufficient conditions for the convergence: for all $\delta, 0<\delta<\frac{1}{2}, I_{t}^{\delta} z_{t} \rightarrow 0$ (rate of convergence), as $t \rightarrow \infty, P_{\theta}$-a.s., can be obtained from Theorem 2.1 of [6] and, finally, to establish the asymptotic distribution of $I_{t}^{1 / 2}(\theta) z_{t}$, as $t \rightarrow \infty$ (under measure P_{θ}), one can use Theorem 3.1 of 6].

As an illustration, in the present work we restrict ourselves by results concerning the convergence: $z_{t} \rightarrow 0$, as $t \rightarrow \infty, P_{\theta}$-a.s., rate of convergence, to avoid complex notation needed to state conditions for the validity of asymptotic expansion of $I_{t}^{1 / 2} z_{t}$ (see Eq. (3.1) from [?], with $R_{t} \xrightarrow{P_{8}} 0$, as $t \rightarrow \infty$.

Note that this convergence is equivalent to the strong consistency of recursive estimate $\left(\theta_{t}\right)_{t \geq 0}$ given by (4) or (4]), that is $\theta_{t} \rightarrow \theta$, as $t \rightarrow \infty, P_{\theta}$-a.s.

Theorem 1. Let the following conditions be satisfied: for all $\theta \in R$
(i) $I^{-1}(\theta+u)<c(\theta)\left(1+u^{2}\right), c(\theta)>0$;
(ii) for each $\varepsilon, \varepsilon>0$,

$$
\inf _{\varepsilon \leq|u| \leq \frac{1}{\varepsilon}}\left|u I^{-1}(\theta+u) \int_{R} \Phi(\theta+u, x)\left(1-\frac{Y(\theta+u, x)}{Y(\theta, x)}\right) \nu(\theta, d x)\right|>0 .
$$

Then $z_{t} \rightarrow 0$, as $t \rightarrow \infty, P_{\theta}$-a.s.
Proof. Condition (A) of Theorem 3.1 from [5] follows from the strong monotonicity of $Y(\theta, x)$ w.r.t. θ, for all $x \in R$.

Condition (B) of Theorem 3.1 of [5] is also satisfied, since

$$
h_{t}(u)=\gamma_{t}^{2}(\theta+u) I(\theta+u)=\frac{1}{\lambda^{2} t^{2} I^{2}(\theta+u)} I(\theta+u)=I^{-1}(\theta+u) \frac{1}{\lambda^{2} t^{2}} .
$$

Therefore

$$
h_{t}(u) \leq B_{t}\left(1+u^{2}\right),
$$

with $B_{t}=\frac{c(\theta)}{\lambda^{2}} \frac{1}{t^{2}}$ and $\int_{0}^{\infty} B_{s} d s=\infty$.
Condition (I) of Theorem 3.1 from [5] is satisfied, since

$$
\begin{gathered}
\int_{0}^{\infty} \inf _{\varepsilon \leq|u| \leq \frac{1}{\varepsilon}}\left|u H_{t}(u)\right| d K_{t}=\int_{0}^{\infty} \inf \left|u \gamma_{t}(\theta+u) \int_{R} \Phi(\theta+u, x)\left(1-\frac{Y(\theta+u, x)}{Y(\theta)}\right) \nu(\theta, d x)\right| \lambda d t \\
\quad=\inf _{\varepsilon \leq|u| \leq \frac{1}{\varepsilon}}\left|u I^{-1}(\theta+u) \int_{R} \Phi(\theta+u, x)\left(1-\frac{Y(\theta+u, x)}{Y(\theta)}\right) \nu(\theta, d x)\right| \int_{0}^{\infty} \frac{d t}{t}=\infty .
\end{gathered}
$$

Below we assume that $z_{t} \rightarrow 0$, as $t \rightarrow \infty, P_{\theta}$-a.s.
Denote

$$
\beta_{t}=-\lim _{u \rightarrow 0} \frac{H_{t}(u)}{u}, \quad \beta(u)= \begin{cases}-\frac{H_{t}(u)}{u}, & u \neq 0 \\ \beta_{t}, & u=0\end{cases}
$$

Theorem 2. Suppose that for each $\delta, 0<\delta<1$, the following conditions are satisfied:
(i) $\int_{0}^{\infty}\left[\delta_{t}-2 \beta_{t}(u)\right]^{+} d t<\infty$;
(ii) $\int_{0}^{\infty} I_{t}^{\delta}(\theta) h_{t}\left(z_{t-}, z_{t-}\right) d t<\infty \quad P_{\theta^{-}}$a.s., where $h_{t}(u, v)=\frac{d\langle M(u), M(v)\rangle_{t}}{d K_{t}}$.

Then $I_{t}^{\delta}(\theta) z_{t}^{2} \rightarrow 0$, as $t \rightarrow \infty, P_{\theta}$-a.s.
Proof. It is enough to note that in Theorem 2.1 of [6] we must take $\gamma_{t}=t$ and $r_{t}^{\delta}=\frac{\delta}{t}$.

References

[1] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. SpringerVerlag, Berlin, 1987.
[2] N. Lazrieva, T. Sharia and T. Toronjadze, Semimartingale stochastic approximation procedure and recursive estimation. Martingale theory and its application. J. Math. Sci. (N. Y.) 153 (2008), no. 3, 211-261.
[3] N. Lazrieva and T. Toronjadze, Asymptotic theory of M-estimates in general statistical models. Parts I and II. Centrum Voor Wiskunde en Information, Reports BS-R9019-20 (1990).
[4] N. Lazrieva and T. Toronjadze, Recursive estimation procedures for one-dimensional parameter of statistical models associated with semimartingales. Trans. A. Razmadze Math. Inst. 171 (2017), no. 1, 57-75.
[5] N. Lazrieva, T. Sharia and T. Toronjadze, The Robbins-Monro type stochastic differential equations. I. Convergence of solutions. Stochastics Stochastics Rep. 61 (1997), no. 1-2, 67-87.
[6] N. Lazrieva, T. Sharia and T. Toronjadze, T. The Robbins-Monro type stochastic differential equations. II. Asymptotic behaviour of solutions. Stochastics Stochastics Rep. 75 (2003), no. 3, 153-180.

[^0]: ${ }^{*}$ Email addresses: lazrieva@gmail.com (Nanuli Lazrieva), toronj333@yahoo.com (Temur Toronjadze)

