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Abstract

Recursive estimation procedure of a one-dimensional parameter of Levy measure of Com-
pound Poisson process is introduced and their asymptotic properties are investigated.

The object of our investigation is a parameter filtered statistical model

E =
(
Ω,F ,F = (Ft)t≥0, (Pθ, θ ∈ R)

)
(1)

associated with one-dimensional F-adapted RCLL process X = (Xt)t≥0 in the following way:
for each θ ∈ R, Pθ is assumed to be the unique measure on (Ω,F) such that under Pθ, X =
(Xt)t≥0 is a semimartingale the triplet of predictable characteristics (Bθ, 0, νθ), where Bθ(t) =
λt
∫
R xI(|x|≤1)ν(θ, dx), νθ(dt, dx) = λ dt ν(θ; dx), where λ > 0, ν(θ, ·) is probability measure with∫

R x
2ν(θ, dx) <∞.

It is obvious that under Pθ, X = (Xt)t≥0 is a Compound Poisson process that can be written
in the following form:

Xt =

Nt∑
i=1

ξi,

where N = (Nt)t≥0 is a Standard Poisson process with intensity λ > 0, and ξ = (ξn)n≥1 is the
sequence of i.i.d. random variables with the probability distribution ν(θ, ·) (see, e.g., [1]).

Our aim is to construct recursive estimation procedure for unknown parameter θ ∈ R.
Suppose that for each pair (θ, θ′) the measures ν(θ, ·) and ν(θ′, ·) are equivalent. Fix some θ̃ ∈ R

and denote P
θ̃

:= P , ν
θ̃

:= ν, ν(θ̃;x) = ν(·). Then

Pθ
loc∼ P, θ ∈ R,

and the local density process ρt(θ) =
dPθ,t
dPt

can be represented as the Dolean esponential

ρt(θ) = Et(M(θ)),

where M(θ) = (Y (θ)− 1) ∗ (µ− ν), where Y (θ, x) = dν(θ,x)
dν(x) .
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Further, assume that the density Y (θ, x) is continuously differentiable in θ for each x ∈ R,
and differentiability under integral signs is possible. Note that under assumptions listed above the
model (1) is regular in the sense given in [2].

It is not hard to observe that

Lt(θ) :=
∂

∂θ
ln ρt(θ) =

Ẏ (θ)

Y (θ)
∗ (µ− νθ) = Φ(θ) ∗ (µ− νθ)

(
Φ(θ) =

Ẏ (θ)

Y (θ)

)
. (2)

Hence, the maximum likelihood equation is

Lt(θ) = Φ(θ) ∗ (µ− νθ)t = 0. (3)

Remark 1. The problem of solvability of Eq. (3) in more general setting is studied in [3].

Eq. (3) can be rewritten in the equivalent form

Nt∑
n=1

Ẏ (θ, ξn)

Y (θ, ξn)
= 0 =⇒ θ̂t −MLE. (3′)

So, for each t > 0, we need to solve Eq. (3) or (3′) which is not easy task (in general).
Instead in [2] we proposed the recursive procedure to obtain the process θ = (θt)t≥0 (recursive

estimate) with the same asymptotic properties as MLE θ̂t, as t→∞, Pθ-a.s.
To develop this procedure first of all assume that

I(θ) :=

∫
R

Φ2(x, θ)ν(θ, dx) <∞.

Then L(θ) = (Lt(θ), t ≥ 0) ∈M2
loc(Pθ) and the Fisher information process is

It(θ) = 〈L(θ), L(θ)〉t = λtI(θ).

Denote γt(θ) = I−1t (θ). The recursive estimation procedure, SDE (3.4) of [4] in the case under
consideration is of the following form:

θt = θ0 +

t∫
0

∫
R

γs(θs−)Φ(θs−, x)

(
1− Y (θs−, x)

Y (θ, x)

)
ν(ds, dx)

+

t∫
0

∫
R

γs(θs−)Φ(θs−, x)(µ− νθ)(ds, dx). (4)

Remark 2. Although Eq. (4) is equivalent to the following equation

θt = θ0 +

Nt∑
n=1

Φ(θn−1, ξn)

nI(θ)
, (4′)

we prefer the form of Eq. (4) to investigate asymptotic properties of θt, as t → ∞, Pθ-a.s., based
on results concerning asymptotic behaviour of solutions of Robbins–Monro (RM) type SDE.
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The Robbins–Monro type SDE

zt = z0 +

t∫
0

Hs(zs−)dKs +

t∫
0

M(ds, zs−), (5)

where Hs(0) = 0, Hs(u)u < 0, u 6= 0, was introduced in [5]. In [5], [6], the asymptotic behaviour of
z = (zt)t≥0, as t→∞, Pθ-a.s. was investigated.

Assume that for each x ∈ R the function Y (θ, x) is strongly monotone in θ. Denote zt = θt− θ,
then Eq. (4) becomes

zt = z0 +

t∫
0

∫
R

γs(θ + zs−)Φ(θ + zs−, x)

(
1− Y (θ + zs−, x)

Y (θ, x)

)
νθ(ds, dx)

+

t∫
0

∫
R

γs(θ + zs−)Φ(θ + zs−, x)(µ− νθ)(ds, dx) (5′)

and is of the form (5) with Kt = λt,

Ht(u) =

∫
R

γt(θ + u)Φ(θ + u, x)

(
1− Y (θ + u, x)

Y (θ, x)

)
ν(θ, dx), (6)

M(u) = [Mt(u), t ≥ 0] =

[ t∫
0

∫
R

γs(θ + u)Φ(θ + u, x)(µ− νθ)(ds, dx), t ≥ 0

]
. (7)

Denote

ht(u) =
d〈M(u),M(u)〉t

dKt
= γ2t (θ + u)

∫
R

Φ2(θ + u, x)ν(θ, dx) = γ2t (θ + u)I(θ + u).

Hence, (5′) is the special case of the RM type SDE (5) with objects H(u) = (Ht(u))t≥0 and
M(u) = (M(t, u))t≥0 specified by Eqs. (6) and (7), respectively.

Therefore one can use the results about asymptotic behaviour of solution z = (zt)t≥0 of general
SDE (5) to establilsh asymptotic behaviour of solution of SDE (5′), as t→∞.

Namely, one can use Theorem 3.1 of [5] to derive sufficient conditions for the convergence:
zt → 0, as t → ∞, Pθ-a.s., for all θ ∈ R (recall that from now z = (zt)t≥0 is the solution of SDE
(5′)). Further, sufficient conditions for the convergence: for all δ, 0 < δ < 1

2 , Iδt zt → 0 (rate of
convergence), as t→∞, Pθ-a.s., can be obtained from Theorem 2.1 of [6] and, finally, to establish

the asymptotic distribution of I
1/2
t (θ)zt, as t → ∞ (under measure Pθ), one can use Theorem 3.1

of [6].
As an illustration, in the present work we restrict ourselves by results concerning the conver-

gence: zt → 0, as t → ∞, Pθ-a.s., rate of convergence, to avoid complex notation needed to state

conditions for the validity of asymptotic expansion of I
1/2
t zt (see Eq. (3.1) from [?], with Rt

Pθ→ 0,
as t→∞.

Note that this convergence is equivalent to the strong consistency of recursive estimate (θt)t≥0
given by (4) or (4′), that is θt → θ, as t→∞, Pθ-a.s.

Theorem 1. Let the following conditions be satisfied: for all θ ∈ R
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(i) I−1(θ + u) < c(θ)(1 + u2), c(θ) > 0;

(ii) for each ε, ε > 0,

inf
ε≤|u|≤ 1

ε

∣∣∣∣uI−1(θ + u)

∫
R

Φ(θ + u, x)

(
1− Y (θ + u, x)

Y (θ, x)

)
ν(θ, dx)

∣∣∣∣ > 0.

Then zt → 0, as t→∞, Pθ-a.s.

Proof. Condition (A) of Theorem 3.1 from [5] follows from the strong monotonicity of Y (θ, x) w.r.t.
θ, for all x ∈ R.

Condition (B) of Theorem 3.1 of [5] is also satisfied, since

ht(u) = γ2t (θ + u)I(θ + u) =
1

λ2t2I2(θ + u)
I(θ + u) = I−1(θ + u)

1

λ2t2
.

Therefore
ht(u) ≤ Bt(1 + u2),

with Bt = c(θ)
λ2

1
t2

and
∫∞
0 Bs ds =∞.

Condition (I) of Theorem 3.1 from [5] is satisfied, since

∞∫
0

inf
ε≤|u|≤ 1

ε

|uHt(u)| dKt =

∞∫
0

inf

∣∣∣∣uγt(θ + u)

∫
R

Φ(θ + u, x)

(
1− Y (θ + u, x)

Y (θ)

)
ν(θ, dx)

∣∣∣∣λ dt
= inf

ε≤|u|≤ 1
ε

∣∣∣∣uI−1(θ + u)

∫
R

Φ(θ + u, x)

(
1− Y (θ + u, x)

Y (θ)

)
ν(θ, dx)

∣∣∣∣
∞∫
0

dt

t
=∞.

Below we assume that zt → 0, as t→∞, Pθ-a.s.
Denote

βt = − lim
u→0

Ht(u)

u
, β(u) =

{
−Ht(u)

u , u 6= 0,

βt, u = 0.

Theorem 2. Suppose that for each δ, 0 < δ < 1, the following conditions are satisfied:

(i)

∞∫
0

[δt − 2βt(u)]+dt <∞;

(ii)

∞∫
0

Iδt (θ)ht(zt−, zt−) dt <∞ Pθ-a.s., where ht(u, v) =
d〈M(u),M(v)〉t

dKt
.

Then Iδt (θ)z2t → 0, as t→∞, Pθ-a.s.

Proof. It is enough to note that in Theorem 2.1 of [6] we must take γt = t and rδt = δ
t .
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